MicroCapacitance (MC) SA SIDACtor Device

The DO-214AA SA MC *SIDACtor* series is intended for applications sensitive to load values. Typically, high speed connections require a lower capacitance. C_0 values for the MicroCapacitance device are 40% lower than a standard SA part.

This MC *SIDACtor* series is used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	I _S mAmps	I _T Amps	I _H mAmps	C _O pF
P0080SA MC	6	25	4	5	800	2.2	50	45
P0300SA MC	25	40	4	5	800	2.2	50	25

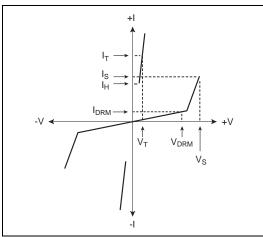
^{*} For surge ratings, see table below.

General Notes:

- All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.
- IPP is a repetitive surge rating and is guaranteed for the life of the product.
- · Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.
- V_{DRM} is measured at I_{DRM}.
- V_S is measured at 100 V/μs.
- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.
- Off-state capacitance (C_O) is measured at 1 MHz with a 2 V bias.

Surge Ratings

Series	I _{PP} 2x10 µs Amps	I _{PP} 8x20 μs Amps	I _{PP} 10x160 μs Amps	I _{PP} 10x560 μs Amps	I _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
Α	150	150	90	50	45	20	500


t_r = rise time to peak value t_d = decay time to half value

Half Value

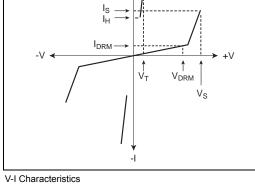
t - Time (µs)

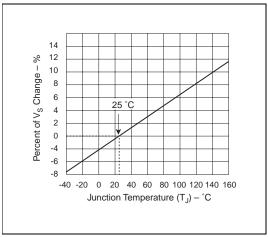
Thermal Considerations

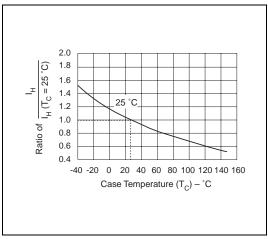
Package	Symbol	Parameter	Value	Unit
DO-214AA	TJ	Operating Junction Temperature Range	-40 to +150	°C
	TS	Storage Temperature Range	-65 to +150	°C
	$R_{ hetaJA}$	Thermal Resistance: Junction to Ambient	90	°C/W

t_r x t_d Pulse Wave-form

Peak


Value Waveform $= t_r \times t_d$


Ipp - Peak Pulse Current - %Ipp


100

50

0 0

Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature